Question:
The areas of three adjacent faces of a cuboid are x, y and z. If the volume is V, prove that V2 = xyz.
Solution:
The areas of three adjacent faces of a cuboid are $x, y$ and $z$.
Volume of the cuboid $=\mathrm{V}$
Observe that $x=$ length $\times$ breadth
$y=$ breadth $\times$ height
$z=$ length $\times$ height
Since volume of cuboid $V=$ length $\times$ breadth $\times$ height, we have :
$V^{2}=V \times V$
$=($ length $\times$ breadth $\times$ height $) \times($ length $\times$ breadth $\times$ height $)$
$=($ length $\times$ breadth $) \times($ breadth $\times$ height $) \times($ length $\times$ height $)$
$=x \times y \times z$
$=x y z$
$\therefore V^{2}=x y z$