The area of the square that can be inscribed in a circle of radius 8 cm is
(a) 256 cm2
(b) 128 cm2
(c)64√2 cm2
(d)64 cm2
(b) Given, radius of circle, r = OC = 8cm.
∴ Diameter of the circle = AC = 2 x OC = 2 x 8= 16 cm
which is equal to the diagonal of a square.
Let side of square be x.
In right angled $\triangle A B C, \quad A C^{2}=A B^{2}+B C^{2}$ [by Pythagoras theorem]
$\Rightarrow \quad(16)^{2}=x^{2}+x^{2}$
$\Rightarrow \quad 256=2 x^{2}$
$\Rightarrow \quad x^{2}=128$
$\therefore \quad$ Area of square $=x^{2}=128 \mathrm{~cm}^{2}$
Alternate Method
Radius of circle $(r)=8 \mathrm{~cm}$
Diameter of circle $(d)=2 r=2 \times 8=16 \mathrm{~cm}$
Since, square inscribed in circle.
$\therefore$ Diagonal of the squre = Diameter of circle
Now, Area of square $=\frac{(\text { Diagonal })^{2}}{2}=\frac{(16)^{2}}{2}=\frac{256}{2}=128 \mathrm{~cm}^{2}$