The area of the base of a right circular cone is 154 cm2 and its height is 14 cm. Its curved surface area is
(a) $154 \sqrt{5} \mathrm{~cm}^{2}$
(b) $154 \sqrt{7} \mathrm{~cm}^{2}$
(c) $77 \sqrt{7} \mathrm{~cm}^{2}$
(d) $77 \sqrt{5} \mathrm{~cm}^{2}$
(a) $154 \sqrt{5} \mathrm{~cm}^{2}$
Area of the base of the of a right circular cone $=\pi r^{2}$
Therefore,
$\pi r^{2}=154$
$\Rightarrow \frac{22}{7} \times r^{2}=154$
$\Rightarrow r^{2}=\left(154 \times \frac{7}{22}\right)$
$\Rightarrow r^{2}=49$
$\Rightarrow r=7 \mathrm{~cm}$
Now, r = 7 cm and h = 14 cm
Then, slant height of the cone, $l=\sqrt{r^{2}+h^{2}}$
$=\sqrt{(7)^{2}+(14)^{2}}$
$=\sqrt{49+196}$
$=\sqrt{245}$
$=7 \sqrt{5} \mathrm{~cm}$
Hence, the curved surface area of the cone $=\pi r l$
$=\left(\frac{22}{7} \times 7 \times 7 \sqrt{5}\right) \mathrm{cm}^{2}$
$=154 \sqrt{5} \mathrm{~cm}^{2}$