The area of an equilateral triangle is

Question:

The area of an equilateral triangle is $4 \sqrt{3} \mathrm{~cm}^{2}$. Its perimeter is

(a) 9 cm
(b) 12 cm

(c) $12 \sqrt{3} \mathrm{~cm}$

(d) $6 \sqrt{3} \mathrm{~cm}$

 

Solution:

(b) 12 cm

Area of an equilateral triangle $=\frac{\sqrt{3}}{4} a^{2}$ (where $a$ is the length of the side)

Thus, we have:

$4 \sqrt{3}=\frac{\sqrt{3}}{4} a^{2}$

$\Rightarrow a^{2}=16$

$\Rightarrow a=4 \mathrm{~cm}$

Perimeter of the equilateral triangle $=3 a=3 \times 4=12 \mathrm{~cm}$

Leave a comment