Question:
The area of a trapezium is 180 cm2 and its height is 9 cm. If one of the parallel sides is longer than the other by 6 cm, find the two parallel sides.
Solution:
Let the lengths of the parallel sides be $x \mathrm{~cm}$ and $(x+6) \mathrm{cm}$.
Now,
Area of trapezium $=\left\{\frac{1}{2} \times(x+x+6) \times 9\right\} \mathrm{cm}^{2}$
$=\left(\frac{1}{2} \times(2 x+6) \times 9\right) \mathrm{cm}^{2}$
$=4.5(2 x+6) \mathrm{cm}^{2}$
$=(9 x+27) \mathrm{cm}^{2}$
Area of trapezium $=180 \mathrm{~cm}^{2}$ (Given)
$\therefore 9 x+27=180$
$\Rightarrow 9 x=(180-27)$
$\Rightarrow 9 x=153$
$\Rightarrow x=\frac{153}{9}$
$\Rightarrow x=17$
Hence, the lengths of the parallel sides are $17 \mathrm{~cm}$ and $23 \mathrm{~cm}$, that is, $(17+6) \mathrm{cm}$.