The area of a right-triangle is 600 cm2. If the base of the triangle exceeds the altitude by 10 cm, find the dimensions of the triangle.
Let the altitude of the triangle be x cm.
Therefore, the base of the triangle will be (x + 10) cm.
Area of triangle $=\frac{1}{2} x(x+10)=600$
$\Rightarrow x(x+10)=1200$
$\Rightarrow x^{2}+10 x-1200=0$
$\Rightarrow x^{2}+(40-30) x-1200=0$
$\Rightarrow x^{2}+40 x-30 x-1200=0$
$\Rightarrow x(x+40)-30(x+40)=0$
$\Rightarrow(x+40)(x-30)=0$
$\Rightarrow x=-40$ or $x=30$
$\Rightarrow x=30 \quad[\because$ Altitude cannot be negative $]$
Thus, the altitude and base of the triangle are $30 \mathrm{~cm}$ and $(30+10=40) \mathrm{cm}$, respectively.
$\because$ (Hypotenuse) $^{2}=$ (Altitude) $^{2}+$ (Base) $^{2}$
$\Rightarrow(\text { Hypotenuse })^{2}=(30)^{2}+(40)^{2}$
$\Rightarrow(\text { Hypotenuse })^{2}=900+1600=2500$
$\Rightarrow(\text { Hypotenuse })^{2}=(50)^{2}$
$\Rightarrow($ Hypotenuse $)=50$
Thus, the dimensions of the triangle are:
Hypotenuse $=50 \mathrm{~cm}$
Altitude $=30 \mathrm{~cm}$
Base $=40 \mathrm{~cm}$