The area of a circular path of uniform width h surrounding a circular region of radius r is
(a) $\pi(2 \mathrm{r}+\mathrm{h}) \mathrm{r}$
(b) $\pi(2 \mathrm{r}+\mathrm{h}) h$
(c) $\pi(\mathrm{h}+\mathrm{r}) \mathrm{r}$
(d) $\pi(\mathrm{h}+\mathrm{r}) h$
We have
$O A=r$
$A B=h$
Therefore, radius of the outer circle will be $r+h$.
Now we will find the area between the two circles.
Area of the circular path = area of the outer circle - area of the inner circle
$\therefore$ Area of the circular path $=\pi(r+h)^{2}-\pi r^{2}$
$\therefore$ Area of the circular path $=\pi\left(r^{2}+2 r h+h^{2}\right)-\pi r^{2}$
$\therefore$ Area of the circular path $=\pi\left(r^{2}+2 r h+h^{2}-r^{2}\right)$
Cancelling $r^{2}$ we get,
Area of the circular path $=\pi\left(2 r h+h^{2}\right)$
$\therefore$ Area of the circular path $=\pi(2 r+h) h$
Therefore, area of the circle is $\pi(2 r+h) h$.
Hence, the correct answer is option (b).