Question:
The area (in sq. units) of the region $\left\{(x, y) \in R^{2}: x^{2} \leq y \leq|3-2 x|\right.$, is:
Correct Option: 1
Solution:
Point of intersection of $y=x^{2}$ and $y=-2 x+3$ is obtained by $x^{2}+2 x-3=0$
$\Rightarrow \quad x=-3,1$
So, required area $=\int_{-3}^{1}($ line $-$ parabola $) d z$
$=\int_{-2}^{1}\left(3-2 x-x^{2}\right) d x$
$=\left[3 x-x^{2}-\frac{x^{3}}{3}\right]_{-3}^{1}$
$=(3) 4-2\left(\frac{1^{2}-3^{2}}{2}\right)-\left(\frac{1^{3}+3^{3}}{3}\right)$
$=12+8-\frac{28}{3}=\frac{32}{3}$