The area (in sq. units) bounded by the parabola

Question:

The area (in sq. units) bounded by the parabola $y=x^{2}-1$, the tangent at the point $(2,3)$ to it and the $y$-axis is :

  1. $\frac{14}{3}$

  2. $\frac{56}{3}$

  3. $\frac{8}{3}$

  4. $\frac{32}{3}$


Correct Option: , 3

Solution:

Equation of tangent at $(2,3)$ on

$y=x^{2}-1$, is $y=(4 x-5)$    ............(i)

$\therefore$ Required shaded area

$=\operatorname{ar}(\Delta \mathrm{ABC})-\int_{-1}^{3} \sqrt{\mathrm{y}+1} \mathrm{dy}$

$=\frac{1}{2} \cdot(8) \cdot(2)-\frac{2}{3}\left((y+1)^{3 / 2}\right)_{-1}^{3}$

$=8-\frac{16}{3}=\frac{8}{3}$ (square units)

Leave a comment