The area bounded by the curve

Question:

The area bounded by the curve $y=x|x|, x$-axis and the ordinates $x=-1$ and $x=1$ is given by

[Hint: $y=x^{2}$ if $x>0$ and $y=-x^{2}$ if $x<0$ ]

A. 0

B. $\frac{1}{3}$

C. $\frac{2}{3}$

D. $\frac{4}{3}$

Solution:

Required area $=\int_{-1}^{1} y d x$

$=\int_{-1}^{1} x|x| d x$

$=\int_{-1}^{0} x^{2} d x+\int_{0}^{1} x^{2} d x$

$=\left[\frac{x^{3}}{3}\right]_{-1}^{0}+\left[\frac{x^{3}}{3}\right]_{0}^{1}$

$=-\left(-\frac{1}{3}\right)+\frac{1}{3}$

$=\frac{2}{3}$ units

Thus, the correct answer is C.

Leave a comment