The angular momentum of a planet of mass

Question:

The angular momentum of a planet of mass $M$ moving around the sun in an elliptical orbit is $\overrightarrow{\mathrm{L}}$. The magnitude of the areal velocity of the planet is:

  1. $\frac{4 L}{M}$

  2. $\frac{\mathrm{L}}{\mathrm{M}}$

  3.  $\frac{2 L}{M} 80$

  4. $\frac{L}{2 M}$


Correct Option: , 4

Solution:

For small displacement ds of the planet its area can be written as

$\mathrm{dA}=\frac{1}{2} \mathrm{rd} \ell$

$=\frac{1}{2} \mathrm{rds} \sin \theta$

A. vel $=\frac{\mathrm{dA}}{\mathrm{dt}}=\frac{1}{2} \mathrm{r} \sin \theta \frac{\mathrm{ds}}{\mathrm{dt}}=\frac{\mathrm{Vr} \sin \theta}{2}$

$\frac{\mathrm{dA}}{\mathrm{dt}}=\frac{1}{2} \frac{\mathrm{mVr} \sin \theta}{\mathrm{m}}=\frac{\mathrm{L}}{2 \mathrm{~m}}$

Leave a comment