The angles of elevation of the top of a tower from two points at distances of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary. Show that the height of the tower is 6 metres.
Let $A B$ be the tower and $C$ and $D$ be two points such that $A C=4 \mathrm{~m}$ and $A D=9 \mathrm{~m}$.
Let:
$A B=h \mathrm{~m}, \angle B C A=\theta$ and $\angle B D A=90^{\circ}-\theta$
In the right $\triangle B C A$, we have:
$\tan \theta=\frac{A B}{A C}$
$\Rightarrow \tan \theta=\frac{h}{4} \quad \ldots(1)$
In the right ∆BDA, we have:
$\tan \left(90^{\circ}-\theta\right)=\frac{A B}{A D}$
$\Rightarrow \cot \theta=\frac{h}{9} \quad\left[\tan \left(90^{\circ}-\theta\right)=\cot \theta\right]$
$\Rightarrow \frac{1}{\tan \theta}=\frac{h}{9} \quad \ldots(2) \quad\left[\cot \theta=\frac{1}{\tan \theta}\right]$
Multiplying equations (1) and (2), we get:
$\tan \theta \times \frac{1}{\tan \theta}=\frac{h}{4} \times \frac{h}{9}$
$\Rightarrow 1=\frac{h^{2}}{36}$
$\Rightarrow 36=h^{2}$
⇒ h = ±6
Height of a tower cannot be negative.
∴ Height of the tower = 6 m