The angles of elevation of the top of a tower from two points at distances of 5 metres and 20 metres from the base of the tower and in the same straight line with it, are complementary. Find the height of the tower.
Let the height of the tower be AB.
We have,
$\mathrm{AC}=5 \mathrm{~m}, \mathrm{AD}=20 \mathrm{~m}$
Let the angle of elevation of the top of the tower (i.e. $\angle \mathrm{ACB}$ ) from point $\mathrm{C}$ be $\theta$. Then,
the angle of elevation of the top of the tower (i.e. $\angle \mathrm{ADB}$ ) from point $\mathrm{D}=\left(90^{\circ}-\theta\right)$
Now, in $\triangle \mathrm{ABC}$,
$\tan \theta=\frac{\mathrm{AB}}{\mathrm{AC}}$
$\Rightarrow \tan \theta=\frac{\mathrm{AB}}{5} \quad \ldots \ldots$ (i)
Also, in $\triangle \mathrm{ABD}$,
$\cot \left(90^{\circ}-\theta\right)=\frac{\mathrm{AD}}{\mathrm{AB}}$
$\Rightarrow \tan \theta=\frac{20}{\mathrm{AB}} \quad \ldots$. (ii)
From (i) and (ii), we get
$\frac{\mathrm{AB}}{5}=\frac{20}{\mathrm{AB}}$
$\Rightarrow \mathrm{AB}^{2}=100$
$\Rightarrow \mathrm{AB}=\sqrt{100}$
$\therefore \mathrm{AB}=10 \mathrm{~m}$
So, the height of the tower is 10 m.