The angles of depression of two ships from the top of a light house are 45° and 30° towards east. If the ships are 100 m apart. the height of the light house is
(a) $\frac{50}{\sqrt{3+1}} m$
(b) $\frac{50}{\sqrt{3-1}} m$
(c) $50(\sqrt{3}-1) m$
(d) $50(\sqrt{3}+1) m$
Let = be the light house.
The given situation can be represented as,
It is clear that and
Again, let and m is given.
Here, we have to find the height of light house.
So we use trigonometric ratios.
In a triangle,
$\Rightarrow \tan C=\frac{A B}{B C}$
$\Rightarrow \tan 45^{\circ}=\frac{h}{x}$
$\Rightarrow \mathrm{I}=\frac{h}{x}$
$\Rightarrow h=x$
Again in a triangle ABD,,
$\Rightarrow \tan D=\frac{A B}{B C+C D}$
$\Rightarrow \tan 30^{\circ}=\frac{h}{x+100}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{x+100}$
$\Rightarrow \sqrt{3} h=x+100$
Put $x=h$
$\Rightarrow \sqrt{3} h=h+100$
$\Rightarrow h(\sqrt{3}-1)=100$
$\Rightarrow h=\frac{100}{\sqrt{3}-1}$
$\Rightarrow h=\frac{100}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}$
$\Rightarrow h=50(\sqrt{3}+1)$
Hence the correct option is $d$.