The angles of depression of two ships from the top of a light house and on the same side of it are found to be 45° and 30° respectively. If the ships are 200 m apart, find the height of the light house. [CBSE 2012]
Let CD be the the light house and A and B be the positions of the two ships.
AB = 200 m (Given)
Suppose CD = h m and BC = x m
Now,
In right ∆BCD,
$\tan 45^{\circ}=\frac{\mathrm{CD}}{\mathrm{BC}}$
$\Rightarrow 1=\frac{h}{x}$
$\Rightarrow x=h \quad \ldots$. (1)
In right ∆ACD,
$\tan 30^{\circ}=\frac{\mathrm{CD}}{\mathrm{AC}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{x+200}$
$\Rightarrow \sqrt{3} h=x+200 \quad \ldots(2)$
From (1) and (2), we get
$\sqrt{3} h=200+h$
$\Rightarrow \sqrt{3} h-h=200$
$\Rightarrow(\sqrt{3}-1) h=200$
$\Rightarrow h=\frac{200}{\sqrt{3}-1}$
$\Rightarrow h=\frac{200(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}$
$\Rightarrow h=\frac{200(\sqrt{3}+1)}{2}=100(\sqrt{3}+1) \mathrm{m}$
Hence, the height of the light house is $100(\sqrt{3}+1) \mathrm{m}$.