The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.
Let the angles of the triangle be $(a-d)^{\circ},(a)^{\circ}$ and $(a+d)^{\circ}$.
We know,
$a-d+a+a+d=180$
$\Rightarrow 3 a=180$
$\Rightarrow a=60$
Given:
Greatest angle $=5 \times$ Least angle
or, $\frac{\text { Greatest angle }}{\text { Least angle }}=5$
or, $\frac{a+d}{a-d}=5$
or, $\frac{60+d}{60-d}=5$
or, $60+d=300-5 d$
or, $6 d=240$
or, $d=40$
Hence, the angles are $(a-d)^{\circ},(a)^{\circ}$ and $(a+d)^{\circ}$, i.e., $20^{\circ}, 60^{\circ}$ and $100^{\circ}$, respectively.
$\therefore$ Angles of the triangle in radians $=\left(20 \times \frac{\pi}{180}\right),\left(60 \times \frac{\pi}{180}\right)$ and $\left(100 \times \frac{\pi}{180}\right)$
$=\frac{\pi}{9}, \frac{\pi}{3}$ and $\frac{5 \pi}{9}$