Question:
The angles of a quadrilateral are in AP, and the greatest angle is double the least. Express the least angle in radians.
Solution:
Let the smallest term be x, and the largest term be 2x
Then AP formed= x, ?, ?, 2x
So
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[\mathrm{a}+(\mathrm{a}+(\mathrm{n}-1) \mathrm{d})]=\frac{\mathrm{n}}{2}[$ First term $+($ Last term $)]$
$360^{\circ}=4 / 2[x+2 x] \ldots . .[$ We know that $\rightarrow a+(n-1) d=$ last term $=2 x]$
$\Rightarrow 180^{\circ}=3 x$
$\Rightarrow x=60^{\circ}$
Now, $60^{\circ}$ is least angle.
$=60^{\circ}=\pi / 180^{\circ} \times 60^{\circ}$
$\Rightarrow 60^{\circ}=\pi / 3 \mathrm{rad}$