The angles of a elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is 6 m.
Let the tower be represented by AB in the figure.
Let AB = h metres.
$\therefore$ In right $\Delta A B C$, we have
$\frac{\boldsymbol{A B}}{\boldsymbol{A C}}=\tan \theta$
$\Rightarrow \frac{\mathbf{h}}{\mathbf{9}}=\tan \theta$ ...(1)
In right $\triangle \mathrm{ABD}$, we have
$\frac{\mathbf{A B}}{\mathbf{A D}}=\tan \left(90^{\circ}-\theta\right)=\cot \theta$
$\Rightarrow \frac{\mathbf{h}}{\mathbf{4}}=\cot \theta$ ...(2)
Multiplying (1) and (2), we get
$\frac{\mathbf{h}}{\mathbf{9}} \times \frac{\mathbf{h}}{\mathbf{4}}=\tan \theta \times \cot \theta=1 \quad[\because \tan \theta \times \cot \theta=1]$
$\Rightarrow \frac{\mathbf{h}^{2}}{\mathbf{3 6}}=1 \Rightarrow \mathrm{h}^{2}=36$
$\Rightarrow \mathrm{h}=\pm 6 \mathrm{~m} \quad \therefore \quad \mathrm{h}=6 \mathrm{~m}$
$[\because$ Height is positive only $]$
Thus, the height of the tower is $6 \mathrm{~m}$.