Question:
The angles A, B, C of a ∆ABC are in AP and the sides a, b, c are in G.P. If a2 + c2 = λb2, then λ = ____________.
Solution:
Since A, B, C are A.P
$\Rightarrow 2 B=A+C$
Since $A+B+C=\pi$ (By angle sum property)
$\Rightarrow 3 B=\pi$
i. e $B=\frac{\pi}{3}$ ....(1)
Also,
Since a, b, c are in g.p
$\Rightarrow b^{2}=a c$ ...(2)
Using $\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$
i.e $\cos \frac{\pi}{3}=\frac{a^{2}+c^{2}-a c}{2 a c} \quad$ from (1) and (2).
$\Rightarrow \frac{1}{2}=\frac{a^{2}+c^{2}-a c}{2 a c}$
$\Rightarrow a c=a^{2}+c^{2}-a c$
$\Rightarrow a^{2}+c^{2}=2 a c$
$\Rightarrow a^{2}+c^{2}=2 b^{2}$ from (2)
Hence $\lambda=2$