The angle of elevation of the top of a vertical tower from a point on the ground is 60°. From another point 10 m vertically above the first, its angle of elevation is 30°. Find the height of the tower.
Let PQ be the tower.
We have,
$\mathrm{AB}=10 \mathrm{~m}, \angle \mathrm{MAP}=30^{\circ}$ and $\angle \mathrm{PBQ}=60^{\circ}$
Also, $\mathrm{MQ}=\mathrm{AB}=10 \mathrm{~m}$
Let $\mathrm{BQ}=x$ and $\mathrm{PQ}=h$
So, $\mathrm{AM}=\mathrm{BQ}=x$ and $\mathrm{PM}=\mathrm{PQ}-\mathrm{MQ}=h-10$
In $\Delta \mathrm{BPQ}$,
$\tan 60^{\circ}=\frac{\mathrm{PQ}}{\mathrm{BQ}}$
$\Rightarrow \sqrt{3}=\frac{h}{x}$
$\Rightarrow x=\frac{h}{\sqrt{3}} \quad \ldots \ldots$ (i)
Now, in $\triangle \mathrm{AMP}$,
$\tan 30^{\circ}=\frac{\mathrm{PM}}{\mathrm{AM}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h-10}{x}$
$\Rightarrow h \sqrt{3}-10 \sqrt{3}=x$
$\Rightarrow h \sqrt{3}-10 \sqrt{3}=\frac{h}{\sqrt{3}} \quad[$ Using (i) $]$
$\Rightarrow 3 h-30=h$
$\Rightarrow 3 h-h=30$
$\Rightarrow 2 h=30$
$\Rightarrow h=\frac{30}{2}$
$\therefore h=15 \mathrm{~m}$
So, the height of the tower is 15 m.