The angle of elevation of the top of a tower at a distance of 120 m from a point A on the ground is 45°.
The angle of elevation of the top of a tower at a distance of 120 m from a point A on the ground is 45°. If the angle of elevation of the top of a flagstaff fixed at the top of the tower, at A is 60°, then find the height of the flagstaff [Use $\sqrt{3}=1.732]$
Let BC and CD be the heights of the tower and the flagstaff, respectively.
We have,
$\mathrm{AB}=120 \mathrm{~m}, \angle \mathrm{BAC}=45^{\circ}, \angle \mathrm{BAD}=60^{\circ}$
Let $\mathrm{CD}=x$
In $\Delta \mathrm{ABC}$,
$\tan 45^{\circ}=\frac{\mathrm{BC}}{\mathrm{AB}}$
$\Rightarrow 1=\frac{\mathrm{BC}}{120}$
$\Rightarrow \mathrm{BC}=120 \mathrm{~m}$
Now, in $\triangle \mathrm{ABD}$,
$\tan 60^{\circ}=\frac{\mathrm{BD}}{\mathrm{AB}}$
$\Rightarrow \sqrt{3}=\frac{\mathrm{BC}+\mathrm{CD}}{120}$
$\Rightarrow \mathrm{BC}+\mathrm{CD}=120 \sqrt{3}$
$\Rightarrow 120+x=120 \sqrt{3}$
$\Rightarrow x=120 \sqrt{3}-120$
$\Rightarrow x=120(\sqrt{3}-1)$
$\Rightarrow x=120(1.732-1)$
$\Rightarrow x=120(0.732)$
$\Rightarrow x=87.84 \approx 87.8 \mathrm{~m}$
So, the height of the flagstaff is 87.8 m.