The angle of elevation of a stationery cloud from a point 2500 m above a lake is 15° and the angle of depression of its reflection in the lake is 45°. What is the height of the cloud above the lake level? (Use tan 15° = 0.268)
Let AB be the surface of lake and P be the point of observation such that m. Let C be the position of cloud and be the reflection in the lake. Then
Let be the perpendicular from P on CB.
Let $\mathrm{PQ}=x \mathrm{~m}, \mathrm{CQ}=h, \mathrm{QB}=2500 \mathrm{~m}$. then $\mathrm{CB}=h+2500$ consequently $\mathrm{C}^{\prime} \mathrm{B}=h+2500 \mathrm{~m} .$ and $\angle \mathrm{CPQ}=15^{\circ}, \angle Q P C^{\prime}=45^{\circ}$.
Here we have to find height of cloud.
We use trigonometric ratios.
$\ln \triangle P C Q$
$\Rightarrow \tan 15^{\circ}=\frac{C Q}{P Q}$
$\Rightarrow 2-\sqrt{3}=\frac{h}{x}$
$\Rightarrow x=\frac{h}{2-\sqrt{3}}$
Again in $_{\Delta} P Q C^{\prime}$,
$\Rightarrow \tan 45^{\prime}=\frac{Q B+B C^{\prime}}{P Q}$
$\Rightarrow \mathrm{I}=\frac{2500+h+2500}{x}$
$\Rightarrow x=5000+h$
$\Rightarrow \frac{h}{2-\sqrt{3}}=5000+h$
$\Rightarrow h=2500(\sqrt{3}-1)$
$\Rightarrow C B=2500+2500(\sqrt{3}-1)$
$\Rightarrow C B=2500 \sqrt{3}$
Hence the height of cloud is $2500 \sqrt{3} \mathrm{~m}$.