The angle of elevation of a cloud from a point h metre above a lake is θ. The angle of depression of its reflection in the lake is 45°. The height of the cloud is
(a) h tan (45° + θ)
(b) h cot (45° − θ)
(c) h tan (45° − θ)
(d) h cot (45° + θ)
Let be the surface of the lake and be the point of observation. So .
The given situation can be represented as,
Here, is the position of the cloud and is the reflection in the lake. Then .
Let be the perpendicular from on . Then and .
Let , , then and
Here, we have to find the height of cloud.
So we use trigonometric ratios.
In ,
$\Rightarrow \tan \theta=\frac{C M}{P M}$
$\Rightarrow \tan \theta=\frac{x}{y}$
$\Rightarrow y=\frac{x}{\tan \theta}$ ...........(1)
Again in $\triangle P M C^{\prime}$,
$\Rightarrow \tan 45^{\circ}=\frac{C^{\prime} M}{P M}$
$\Rightarrow 1=\frac{C^{\prime} B+B M}{P M}$
$\Rightarrow \mathrm{I}=\frac{x+h+h}{y}$
$\Rightarrow y=x+2 h$
$\Rightarrow \frac{x}{\tan \theta}=x+2 h$ [Using (1)]
$\Rightarrow \frac{x-x \tan \theta}{\tan \theta}=2 h$
$\Rightarrow x=\frac{2 h \tan \theta}{(1-\tan \theta)}$
Now,
$\Rightarrow C B=h+x$
$\Rightarrow C B=h+\frac{2 h \tan \theta}{(1-\tan \theta)}$
$\Rightarrow C B=\frac{h(1-\tan \theta)+2 h \tan \theta}{1-\tan \theta}$
$\Rightarrow C B=\frac{h(1+\tan \theta)}{1-\tan \theta}=h \tan \left(45^{\circ}+\theta\right) \quad\left[\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}\right]$
Hence the correct answer is $a$.