The angle between two altitudes of a parallelogram through the vertex of an obtuse angle of the parallelogram is 60°.
The angle between two altitudes of a parallelogram through the vertex of an obtuse angle of the parallelogram is 60°. Find the angles of the parallelogram.
Given: In parallelogram ABCD, DP⊥ AB, AQ ⊥ BC and ∠PDQ = 60°
In quadrilateral DPBQ, by angle sum property, we have
$\angle P D Q+\angle D P B+\angle B+\angle B Q D=360^{\circ}$
$\Rightarrow 60^{\circ}+90^{\circ}+\angle B+90^{\circ}=360^{\circ}$
$\Rightarrow \angle B=360^{\circ}-240^{\circ}$
$\Rightarrow \angle B=120^{\circ}$
Therefore, $\angle B=120^{\circ}$
Now,
$\angle B=\angle D=120^{\circ}$ (Opposite angles of a parallelogram are equal.)
$\angle A+\angle B=180^{\circ}$ (Adjacent angles of a parallelogram are supplementary.)
$\Rightarrow \angle A+120^{\circ}=180^{\circ}$
$\Rightarrow \angle A=180^{\circ}-120^{\circ}$
$\Rightarrow \angle A=60^{\circ}$
Also,
$\angle A=\angle C=60^{\circ}$ (Opposite angles of a parallleogram are equal.)
So, the angles of a parallelogram are $60^{\circ}, 120^{\circ}, 60^{\circ}$ and $120^{\circ}$.