The angle between the straight lines,

Question:

The angle between the straight lines, whose direction cosines are given by the equations $2 l+2 \mathrm{~m}-\mathrm{n}=0$ and $\mathrm{mn}+\mathrm{n} l+l \mathrm{~m}=0$, is :

  1. $\frac{\pi}{2}$

  2. $\pi-\cos ^{-1}\left(\frac{4}{9}\right)$

  3. $\cos ^{-1}\left(\frac{8}{9}\right)$

  4. $\frac{\pi}{3}$


Correct Option: 1

Solution:

$\mathrm{n}=2(\ell+\mathrm{m})$

$\ell \mathrm{m}+\mathrm{n}(\ell+\mathrm{m})=0$

$\ell \mathrm{m}+2(\ell+\mathrm{m})^{2}=0$

$2 \ell^{2}+2 \mathrm{~m}^{2}+5 \mathrm{~m} \ell=0$

$2\left(\frac{\ell}{m}\right)^{2}+2+5\left(\frac{\ell}{m}\right)=0$

$2 t^{2}+5 t+2=0$

$(t+2)(2 t+1)=0$

$\Rightarrow \mathrm{t}=-2 ;-\frac{1}{2}$

$\cos \theta=\frac{-2-2+4}{\sqrt{9} \sqrt{9}}=0 \Rightarrow 0=\frac{\pi}{2}$

Leave a comment