Question.
The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, find the other two sides.
The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, find the other two sides.
Solution:
In $\triangle \mathrm{ABC}$, base $\mathrm{BC}=\mathrm{x} \mathrm{cm}$
and altitude $A C=(x-7) \mathrm{cm}$
$\angle \mathrm{ACB}=90^{\circ}$
$\mathrm{AB}=13 \mathrm{~cm}$
By Pythagoras theorem, we have
$\mathrm{BC}^{2}+\mathrm{AC}^{2}=\mathrm{AB}^{2}$
$\Rightarrow x^{2}+(x-7)^{2}=13^{2}$
$\Rightarrow x^{2}+x^{2}-14 x+49=169$
$\Rightarrow 2 x^{2}-14 x-120=0$
$\Rightarrow x^{2}-7 x-60=0$
$\Rightarrow x^{2}-12 x+5 x-60=0$
$\Rightarrow x(x-12)+5(x-12)=0$
$\Rightarrow(x+5)(x-12)=0$
$\Rightarrow x=-5$ or $x=12$
We reject $x=-5$
$\Rightarrow x=12$
Therefore, $\mathrm{BC}=12 \mathrm{~cm}$ and $\mathrm{AC}=5 \mathrm{~cm}$.
In $\triangle \mathrm{ABC}$, base $\mathrm{BC}=\mathrm{x} \mathrm{cm}$
and altitude $A C=(x-7) \mathrm{cm}$
$\angle \mathrm{ACB}=90^{\circ}$
$\mathrm{AB}=13 \mathrm{~cm}$
By Pythagoras theorem, we have
$\mathrm{BC}^{2}+\mathrm{AC}^{2}=\mathrm{AB}^{2}$
$\Rightarrow x^{2}+(x-7)^{2}=13^{2}$
$\Rightarrow x^{2}+x^{2}-14 x+49=169$
$\Rightarrow 2 x^{2}-14 x-120=0$
$\Rightarrow x^{2}-7 x-60=0$
$\Rightarrow x^{2}-12 x+5 x-60=0$
$\Rightarrow x(x-12)+5(x-12)=0$
$\Rightarrow(x+5)(x-12)=0$
$\Rightarrow x=-5$ or $x=12$
We reject $x=-5$
$\Rightarrow x=12$
Therefore, $\mathrm{BC}=12 \mathrm{~cm}$ and $\mathrm{AC}=5 \mathrm{~cm}$.