Question:
The adjacent sides of a parallelogram ABCD measure 34 cm and 20 cm, and the diagonal AC measures 42 cm. Find the area of the parallelogram.
Solution:
Parallelogram $A B C D$ is made up of congruent $\triangle A B C$ and $\triangle A D C$.
Area of triangle $A B C=\sqrt{s(s-a)(s-b)(s-c)}$ (Here, $s$ is the semiperimeter.)
Thus, we have:
$s=\frac{a+b+c}{2}$
$s=\frac{34+20+42}{2}$
$s=48 \mathrm{~cm}$
Area of $\Delta A B C=\sqrt{48(48-34)(48-20)(48-42)}$
$=\sqrt{48 \times 14 \times 28 \times 6}$
$=336 \mathrm{~cm}^{2}$
Now,
Area of the parallelogram $=2 \times$ Area of $\Delta A B C$
$=2 \times 336$
$=672 \mathrm{~cm}^{2}$