Question:
The 9th term of an AP is −32 and the sum of its 11th and 13th terms is −94. Find the common difference of the AP.
Solution:
Let a be the first term and d be the common difference of the AP. Then,
$a_{9}=-32$
$\Rightarrow a+(9-1) d=-32 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+8 d=-32 \quad \ldots \ldots(1)$
Now,
$a_{11}+a_{13}=-94$ (Given)
$\Rightarrow(a+10 d)+(a+12 d)=-94$
$\Rightarrow 2 a+22 d=-94$
$\Rightarrow a+11 d=-47 \quad \ldots(2)$
From (1) and (2), we get
$-32-8 d+11 d=-47$
$\Rightarrow 3 d=-47+32=-15$
$\Rightarrow d=-5$
Hence, the common difference of the AP is −5.