Question:
The 4th term of an AP is 11. The sum of the 5th and 7th terms of this AP is 34. Find its common difference.
Solution:
Let a be the first term and d be the common difference of the AP. Then,
$a_{4}=11$
$\Rightarrow a+(4-1) d=11 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+3 d=11 \quad \ldots \ldots(1)$
Now,
$a_{5}+a_{7}=34$ (Given)
$\Rightarrow(a+4 d)+(a+6 d)=34$
$\Rightarrow 2 a+10 d=34$
$\Rightarrow a+5 d=17 \quad \ldots . .(2)$
From (1) and (2), we get
$11-3 d+5 d=17$
$\Rightarrow 2 d=17-11=6$
$\Rightarrow d=3$
Hence, the common difference of the AP is 3.