Question:
The 19th term of an AP is equal to 3 times its 6th term. If its 9th term is 19, find the AP.
Solution:
Let a be the first term and d be the common difference of the AP. Then,
$a_{19}=3 a_{6}$ (Given)
$\Rightarrow a+18 d=3(a+5 d) \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+18 d=3 a+15 d$
$\Rightarrow 3 a-a=18 d-15 d$
$\Rightarrow 2 a=3 d$ $\ldots \ldots(1)$
Also,
$a_{9}=19$ (Given)
$\Rightarrow a+8 d=19 \quad \ldots \ldots(2)$
From (1) and (2), we get
$\frac{3 d}{2}+8 d=19$
$\Rightarrow \frac{3 d+16 d}{2}=19$
$\Rightarrow 19 d=38$
$\Rightarrow d=2$
Putting d = 2 in (1), we get
$2 a=3 \times 2=6$
$\Rightarrow a=3$
So,
$a_{2}=a+d=3+2=5$
$a_{3}=a+2 d=3+2 \times 2=7, \ldots$
Hence, the AP is 3, 5, 7, 9, ... .