The 12th term of an AP is −13 and the sum of its first four terms is 24. Find the sum of its first 10 terms.
Let a be the first term and d be the common difference of the AP. Then,
$a_{12}=-13$
$\Rightarrow a+11 d=-13 \quad \ldots \ldots(1) \quad\left[a_{n}=a+(n-1) d\right]$
Also,
$S_{4}=24$
$\Rightarrow \frac{4}{2}(2 a+3 d)=24 \quad\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}$
$\Rightarrow 2 a+3 d=12 \quad \ldots .(2)$
Solving (1) and (2), we get
$2(-13-11 d)+3 d=12$
$\Rightarrow-26-22 d+3 d=12$
$\Rightarrow-19 d=12+26=38$
$\Rightarrow d=-2$
Putting d = −2 in (1), we get
$a+11 \times(-2)=-13$
$\Rightarrow a=-13+22=9$
∴ Sum of its first 10 terms, S10
$=\frac{10}{2}[2 \times 9+(10-1) \times(-2)]$
$=5 \times(18-18)$
$=5 \times 0$
$=0$
Hence, the required sum is 0.