Question:
The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.
Solution:
Given:
$a_{10}=41$
$\Rightarrow a+(10-1) d=41 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+9 d=41$
And, $a_{18}=73$
$\Rightarrow a+(18-1) d=73 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+17 d=73$
Solving the two equations, we get:
$\Rightarrow 17 d-9 d=73-41$
$\Rightarrow 8 d=32$
$\Rightarrow d=4$ ...(i)
Putting the value in first equation, we get:
$a+9 \times 4=41$
$\Rightarrow a+36=41$
$\Rightarrow a=5$ ...(ii)
$a_{26}=a+(26-1) d \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a_{26}=a+25 d$
$\Rightarrow a_{26}=5+25 \times 4$ (From (i) and (ii))
$\Rightarrow a_{26}=5+100=105$