Test whether the following relations R1, R2, and R3 are (i) reflexive (ii) symmetric and (iii) transitive:
(i) $R_{1}$ on $Q_{0}$ defined by $(a, b) \in R_{1} \Leftrightarrow a=1 / b$.
(ii) $R_{2}$ on $Z$ defined by $(a, b) \in R_{2} \Leftrightarrow|a-b| \leq 5$
(iii) $R_{3}$ on $R$ defined by $(a, b) \in R_{3} \Leftrightarrow a^{2}-4 a b+3 b^{2}=0$.
(i) Reflexivity:
Let a be an arbitrary element of R1. Then,
$a \in R_{1}$
$\Rightarrow a \neq \frac{1}{a}$ for all $a \in \mathrm{Q}_{0}$
So, $R_{1}$ is not reflexive.
Symmetry:
Let $(a, b) \in R_{1}$. Then,
$(a, b) \in R_{1}$
$\Rightarrow a=\frac{1}{b}$
$\Rightarrow b=\frac{1}{a}$
$\Rightarrow(b, a) \in R_{1}$
So, $R_{1}$ is symmetric.
Transitivity:
Here,
$(a, b) \in R_{1}$ and $(b, c) \in R_{2}$
$\Rightarrow a=\frac{1}{b}$ and $b=\frac{1}{c}$
$\Rightarrow a=\frac{1}{\frac{1}{c}}=c$
$\Rightarrow a \neq \frac{1}{c}$
$\Rightarrow(a, c) \notin R_{1}$
So, $R_{1}$ is not transitive.
(ii)
Reflexivity:
Let $a$ be an arbitrary element of $R_{2}$. Then,
$a \in R_{2}$
$\Rightarrow|a-a|=0 \leq 5$
So, $R_{1}$ is reflexive.
Symmetry:
Let $(a, b) \in R_{2}$
$\Rightarrow|a-b| \leq 5$
$\Rightarrow|b-a| \leq 5$ $[$ Since, $|a-b|=|b-a|]$
$\Rightarrow(b, a) \in R_{2}$
So, $R_{2}$ is symmetric.
Transitivity:
Let $(1,3) \in R_{2}$ and $(3,7) \in R_{2}$
$\Rightarrow|1-3| \leq 5$ and $|3-7| \leq 5$
But $|1-7| \not \leq 5$
$\Rightarrow(1,7) \notin R_{2}$
So, $R_{2}$ is not transitive.
(iii)
Reflexivity: Let a be an arbitrary element of R3. Then,
$a \in R_{3}$
$\Rightarrow a^{2}-4 a \times a+3 a^{2}=0$
So, $R_{3}$ is reflexive.
Symmetry:
Let $(a, b) \in R_{3}$
$\Rightarrow a^{2}-4 a b+3 b^{2}=0$
But $b^{2}-4 b a+3 a^{2} \neq 0$ for all $a, b \in R$
So, $R_{3}$ is not symmetric.
Transitivity:
$(1,2) \in R_{3}$ and $(2,3) \in R_{3}$
$\Rightarrow 1-8+6=0$ and $4-24+27=0$
But $1-12+9 \neq 0$
So, $R_{3}$ is not transitive.