Question:
tan 30° cosec 60° + tan 60° sec 30°
Solution:
As we know that,
$\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
$\sec 30^{\circ}=\frac{2}{\sqrt{3}}$
$\operatorname{cosec} 60^{\circ}=\frac{2}{\sqrt{3}}$
$\tan 60^{\circ}=\sqrt{3}$
By substituting these values, we get
$\tan 30^{\circ} \operatorname{cosec} 60^{\circ}+\tan 60^{\circ} \sec 30^{\circ}=\frac{1}{\sqrt{3}} \times \frac{2}{\sqrt{3}}+\sqrt{3} \times \frac{2}{\sqrt{3}}$
$=\frac{2}{3}+2$
$=\frac{2+6}{3}$
$=\frac{8}{3}$
Hence, $\tan 30^{\circ} \operatorname{cosec} 60^{\circ}+\tan 60^{\circ} \sec 30^{\circ}=\frac{8}{3}$