Question:
Sum of the first 14 terms of an A.P. is 1505 and its first term is 10. Find its 25th term.
Solution:
First term, a = 10
Sum of first 14 terms, $S_{14}=1505$
$\Rightarrow \frac{14}{2}[2 \times 10+(14-1) d]=1505$
$\Rightarrow 7 \times(20-13 d)=1505$
$\Rightarrow 20-13 d=\frac{1505}{7}=215$
$\Rightarrow 13 d=-195$
$\Rightarrow d=-15$
Now,
$a_{25}=10+24(-15)=-350$