Question.
State whether the following are true or false. Justify your answer.
(i) sin (A + B) = sin A + sin B
(ii) The value of $\sin \theta$ increases as $\theta$ increases.
(iii) The value of $\cos \theta$ increases as $\theta$ increases.
(iv) $\sin \theta=\cos \theta$ for all values of $\theta$.
(v) $\cot \mathrm{A}$ is not defined for $\mathrm{A}=0^{\circ}$.
State whether the following are true or false. Justify your answer.
(i) sin (A + B) = sin A + sin B
(ii) The value of $\sin \theta$ increases as $\theta$ increases.
(iii) The value of $\cos \theta$ increases as $\theta$ increases.
(iv) $\sin \theta=\cos \theta$ for all values of $\theta$.
(v) $\cot \mathrm{A}$ is not defined for $\mathrm{A}=0^{\circ}$.
Solution:
(i) False.
When A = 60°, B = 30°
LHS = sin (A + B) = sin (60° + 30°)
= sin 90° = 1
RHS = sin A + sin B
= sin 60° + sin 30°
$=\frac{\sqrt{3}}{2}+\frac{1}{2} \neq 1$
i.e., LHS $\neq$ RHS
(ii) True.
Note that $\sin 0^{\circ}=0, \quad \sin 30^{\circ}=\frac{\mathbf{1}}{\mathbf{2}}=0.5$,
$\sin 45^{\circ}=\frac{1}{\sqrt{2}}=0.7$ (approx.)
$\sin 60^{\circ}=\frac{\sqrt{\mathbf{3}}}{\mathbf{2}}=0.87$ (approx.)
and $\quad \sin 90^{\circ}=1$
i.e., value of $\sin \theta$ increases as $\theta$ increases from $0^{\circ}$ to $90^{\circ}$.
(iii) False.
Note that $\cos 0^{\circ}=1$
$\cos 30^{\circ}=\frac{\sqrt{3}}{2}=0.87$ (approx.)
$\cos 45^{\circ}=\frac{1}{\sqrt{2}}=0.7$ (approx.)
$\cos 60^{\circ}=\frac{\mathbf{1}}{\mathbf{2}}=0.5$ and $\cos 90^{\circ}=0$
i.e., value of $\cos \theta$ decreases as $\theta$ increases from $0^{\circ}$ to $90^{\circ}$.
(iv) False, it is true for only $\theta=45^{\circ}$
(v) True, $\cot A=\frac{1}{\mathbf{0}}=$ not defined.
(i) False.
When A = 60°, B = 30°
LHS = sin (A + B) = sin (60° + 30°)
= sin 90° = 1
RHS = sin A + sin B
= sin 60° + sin 30°
$=\frac{\sqrt{3}}{2}+\frac{1}{2} \neq 1$
i.e., LHS $\neq$ RHS
(ii) True.
Note that $\sin 0^{\circ}=0, \quad \sin 30^{\circ}=\frac{\mathbf{1}}{\mathbf{2}}=0.5$,
$\sin 45^{\circ}=\frac{1}{\sqrt{2}}=0.7$ (approx.)
$\sin 60^{\circ}=\frac{\sqrt{\mathbf{3}}}{\mathbf{2}}=0.87$ (approx.)
and $\quad \sin 90^{\circ}=1$
i.e., value of $\sin \theta$ increases as $\theta$ increases from $0^{\circ}$ to $90^{\circ}$.
(iii) False.
Note that $\cos 0^{\circ}=1$
$\cos 30^{\circ}=\frac{\sqrt{3}}{2}=0.87$ (approx.)
$\cos 45^{\circ}=\frac{1}{\sqrt{2}}=0.7$ (approx.)
$\cos 60^{\circ}=\frac{\mathbf{1}}{\mathbf{2}}=0.5$ and $\cos 90^{\circ}=0$
i.e., value of $\cos \theta$ decreases as $\theta$ increases from $0^{\circ}$ to $90^{\circ}$.
(iv) False, it is true for only $\theta=45^{\circ}$
(v) True, $\cot A=\frac{1}{\mathbf{0}}=$ not defined.