State when a function $f(x)$ is said to be increasing on an interval $[a, b] .$ Test whether the function $f(x)=x^{2}$ $6 x+3$ is increasing on the interval $[4,6]$.
Given:- Function $f(x)=f(x)=x^{2}-6 x+3$
Theorem:- Let $f$ be a differentiable real function defined on an open interval $(a, b)$.
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on $(a, b)$
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on $(a, b)$
Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.
For the value of $x$ obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=f(x)=x^{2}-6 x+3$
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}-6 \mathrm{x}+3\right)$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}-6$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=2(\mathrm{x}-3)$
Here A function is said to be increasing on $[a, b]$ if $f(x)>0$
as given
$x \in[4,6]$
$\Rightarrow 4 \leq x \leq 6$
$\Rightarrow 1 \leq(x-3) \leq 3$
$\Rightarrow(x-3)>0$
$\Rightarrow 2(x-3)>0$
$\Rightarrow f^{\prime}(x)>0$
Hence, condition for $f(x)$ to be increasing
Thus $f(x)$ is increasing on interval $x \in[4,6]$