Question:
Solve $|x+1|+|x|>3$
Solution:
We have, $|x+1|+|x|>3$
As, $|x+1|=\left\{\begin{array}{l}(x+1), x \geq-1 \\ -(x+1), x<-1\end{array}\right.$
and $|x|=\left\{\begin{array}{l}x, x \geq 0 \\ -x, x<0\end{array}\right.$
Case I: When $x<-1$,
$|x+1|+|x|>3$
$\Rightarrow-(x+1)-x>3$
$\Rightarrow-2 x-1>3$
$\Rightarrow-2 x>4$
$\Rightarrow x<\frac{4}{-2}$
$\Rightarrow x<-2$
So, $x \in(-\infty,-2)$
Case II : When $-1 \leq x<0$,
$|x+1|+|x|>3$
$\Rightarrow(x+1)-x>3$
$\Rightarrow 1>3$, which is not possible
So, $x \in \phi$
Case III : When $x \geq 0$,
$|x+1|+|x|>3$
$\Rightarrow(x+1)+x>3$
$\Rightarrow 2 x+1>3$
$\Rightarrow 2 x>2$
$\Rightarrow x>\frac{2}{2}$
$\Rightarrow x>1$
So, $x \in(1, \infty)$
From all the cases, we get
$x \in(-\infty,-2) \cup(1, \infty)$