solve this matrices

Question:

If $\left[\begin{array}{cc}2 x+y & 4 x \\ 5 x-7 & 4 x\end{array}\right]=\left[\begin{array}{cc}7 & 7 y-13 \\ y & x+6\end{array}\right]$, then the value of $x$ and $y$ is

(a) $x=3, y=1$

(b) $x=2, y=3$

(c) $x=2, y=4$

(d) $x=3, y=3$

Solution:

$\left[\begin{array}{cc}2 x+y & 4 x \\ 5 x-7 & 4 x\end{array}\right]=\left[\begin{array}{cc}7 & 7 y-13 \\ y & x+6\end{array}\right]$

Corresponding elements of equal matrices are equal.

$\therefore 4 x=x+6 \quad$ and $\quad 2 x+y=7$

$\Rightarrow 3 x=6 \quad$ and $\quad 2 x+y=7$

$\Rightarrow x=2 \quad$ and $\quad 2 x+y=7$

$\Rightarrow x=2 \quad$ and $\quad 2 \times 2+y=7$

$\Rightarrow x=2 \quad$ and $\quad y=7-4$

$\Rightarrow x=2 \quad$ and $\quad y=3$

Therefore, $x=2, y=3$.

Hence, the correct option is (b).

Leave a comment