Solve This follwing

Question:

The quantities $\quad x=\frac{1}{\sqrt{\mu_{0} \in_{0}}}, y=\frac{E}{B} \quad$ and $\mathrm{z}=\frac{1}{\mathrm{CR}}$ are defined where C-capacitance,

R-Resistance, $l$-length, E-Electric field, B-magnetic field and $\in_{0}, \mu_{0}$, free space permittivity and permeability respectively. Then :

  1. Only $x$ and $y$ have the same dimension

  2. $x, y$ and $z$ have the same dimension

  3. Only $x$ and $z$ have the same dimension

  4. Only $y$ and $z$ have the same dimension


Correct Option: , 2

Solution:

$x=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}=$ speed $\Rightarrow[x]=\left[L^{1} T^{-1}\right]$

$\mathrm{y}=\frac{\mathrm{E}}{\mathrm{B}}=$ speed $\Rightarrow[\mathrm{y}]=\left[\mathrm{L}^{1} \mathrm{~T}^{-1}\right]$

$\mathrm{z}=\frac{\ell}{\mathrm{RC}}=\frac{\ell}{\tau} \Rightarrow[\mathrm{z}]=\left[\mathrm{L}^{1} \mathrm{~T}^{-1}\right]$

So, $x, y, z$ all have the same dimensions.

Leave a comment