Solve this following Let the mean and variance of the frequency distribution

Question:

Let the mean and variance of the frequency distribution

be 6 and $6.8$ respectively. If $x_{3}$ is changed from 8 to 7 , then the mean for the new data will be:

 

 

  1. 4

  2. 5

  3. $\frac{17}{3}$

  4. $\frac{16}{3}$


Correct Option: , 3

Solution:

Given $32+8 \alpha+9 \beta=(8+\alpha+\beta) \times 6$

$\Rightarrow 2 \alpha+3 \beta=16$    .............(I)

Also, $4 \times 16+4 \times \alpha+9 \beta=(8+\alpha+\beta) \times 6.8$

$\Rightarrow 640+40 \alpha+90 \beta=544+68 \alpha+68 \beta$

$\Rightarrow 28 \alpha-22 \beta=96$

$\Rightarrow 14 \alpha-11 \beta=48$  ........................(II)

from (i) \& (ii)

$\alpha=5 \& \beta=2$

so, new mean $=\frac{32+35+18}{15}=\frac{85}{15}=\frac{17}{3}$

 

Leave a comment