Solve this following

Question:

The value of $\cos \frac{\pi}{2^{2}} \cdot \cos \frac{\pi}{2^{3}} \cdot \ldots \cdot \cdot \cdot \cos \frac{\pi}{2^{10}} \cdot \sin \frac{\pi}{2^{10}}$ is :

 

  1. $\frac{1}{256}$

  2. $\frac{1}{2}$

  3. $\frac{1}{512}$

  4. $\frac{1}{1024}$


Correct Option: , 3

Solution:

$2 \sin \frac{\pi}{2^{10}} \cos \frac{\pi}{2^{10}} \ldots \ldots \cdot \cos \frac{\pi}{2^{2}}$

$\frac{1}{2^{9}} \sin \frac{\pi}{2}=\frac{1}{512}$

Option (3)

Leave a comment