Solve this following

Question:

The length of the chord of the parabola $x^{2}=4 y$

having equation $x-\sqrt{2} y+4 \sqrt{2}=0$ is :

 

  1. $2 \sqrt{11}$

  2. $3 \sqrt{2}$

  3. $6 \sqrt{3}$

  4. $8 \sqrt{2}$


Correct Option: , 3

Solution:

$x^{2}=4 y$

$x-\sqrt{2} y+4 \sqrt{2}=0$

Solving together we get

$x^{2}=4\left(\frac{x+4 \sqrt{2}}{\sqrt{2}}\right)$

$\sqrt{2} x^{2}+4 x+16 \sqrt{2}$

$\sqrt{2} x^{2}-4 x-16 \sqrt{2}=0$

$\mathrm{x}_{1}+\mathrm{x}_{2}=2 \sqrt{2} ; \quad \mathrm{x}_{1} \mathrm{x}_{2}=\frac{-16 \sqrt{2}}{\sqrt{2}}=-16$

Similarly,

$(\sqrt{2} y-4 \sqrt{2})^{2}=4 y$

$2 y^{2}+32-16 y=4 y$

$\ell_{\mathrm{AB}}=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}}$

$=\sqrt{(2 \sqrt{2})^{2}+64+(10)^{2}-4(16)}$

$=\sqrt{8+64+100-64}$

$=\sqrt{108}=6 \sqrt{3}$

Option (3)

 

Leave a comment