If $y=x^{\cos x}+(\cos x)^{x}$, prove that $\frac{d y}{d x}=x^{\cos x} \cdot\left\{\frac{\cos x}{x}-(\sin x) \log x\right\}+(\cos x)^{x}$
$[(\log \cos x)-x \tan x]$
Leave a comment
All Study Material