Question: Let $A, B, C$ be pairwise independent events with $P(C)>0$ and $P(A \cap B \cap C)=0$. Then $\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \cap \mathrm{B}^{\mathrm{c}} \mid \mathrm{C}\right)$ is equal to:
$P\left(A^{c}\right)-P(B)$
$\mathrm{P}(\mathrm{A})-\mathrm{P}\left(\mathrm{B}^{\mathrm{c}}\right)$
$P\left(A^{c}\right)+P\left(B^{c}\right)$
$P\left(A^{c}\right)-P\left(B^{c}\right) S$
Correct Option: 1
Solution: