Question:
Mark $(\sqrt{)}$ against the correct answer in the following:
If $y=x^{\sin x}$ then $\frac{d y}{d x}=$ ?
A. $(\sin x) \cdot x^{(\sin x-1)}$
B. $(\sin \mathrm{x} \cos \mathrm{x}) \cdot \mathrm{x}^{(\sin \mathrm{x}-1)}$
C. $x^{\sin x}\left\{\frac{\sin x+x \log x \cdot \cos x}{x}\right\}$
D. none of these
Solution: