If $y=(x)^{\cos x}+(\sin x)^{\tan x}$, prove that $\frac{d y}{d x}=x^{\cos x}\left\{\frac{\cos x}{x}-(\sin x) \log x\right\}+(\sin x)^{\tan x}$
$\left\{1+(\log \sin x) \sec ^{2} x\right\}$
Leave a comment
All Study Material