Solve this following

Question:

If $\int x^{5} e^{-4 x^{3}} d x=\frac{1}{48} e^{-4 x^{3}} f(x)+C$, where $C$ is a

constant of integration, then $\mathrm{f}(\mathrm{x})$ is equal to:

 

  1. $-4 x^{3}-1$

  2. $4 x^{3}+1$

  3. $-2 x^{3}-1$

  4. $-2 x^{3}+1$


Correct Option: 1

Solution:

$\int x^{5} \cdot e^{-4 x^{3}} d x=\frac{1}{48} e^{-4 x^{3}} f(x)+c$

Put $x^{3}=t$

$3 x^{2} d x=d t$

$\int x^{3} \cdot e^{-4 x^{3}} \cdot x^{2} d x$

$\frac{1}{3} \int t \cdot e^{-4 t} d t$

$\frac{1}{3}\left[t \cdot \frac{e^{-4 t}}{-4}-\int \frac{e^{-4 t}}{-4} d t\right]$

$-\frac{e^{-4 t}}{48}[4 t+1]+c$

$\frac{-e^{-4 x^{3}}}{48}\left[4 x^{3}+1\right]+c$

$\therefore f(x)=-1-4 x^{3}$

Option (1)

(From the given options (1) is most suitable)

 

Leave a comment