Solve this following

Question:

If $\log _{3} 2, \log _{3}\left(2^{x}-5\right), \log _{3}\left(2^{x}-\frac{7}{2}\right)$ are in an

arithmetic progression, then the value of $x$ is equal to

 

Solution:

$2 \log _{3}\left(2^{x}-5\right)=\log _{3} 2+\log _{3}\left(2^{x}-\frac{7}{2}\right)$

Let $2^{x}=t$

$\log _{3}(t-5)^{2}=\log _{3} 2\left(t-\frac{7}{2}\right)$

$(\mathrm{t}-5)^{2}=2 \mathrm{t}-7$

$\mathrm{t}^{2}-12 \mathrm{t}+32=0$

$(\mathrm{t}-4)(\mathrm{t}-8)=0$

$\Rightarrow 2^{x}=4$ or $2^{x}=8$

$X=2$ (Rejected)

Or $x=3$

 

Leave a comment