Solve this following

Question:

If the function $f(x)=\left\{\begin{array}{l}a|\pi-x|+1, x \leq 5 \\ b|x-\pi|+3, x>5\end{array}\right.$ is

continuous at $x=5$, then the value of $a-b$ is :-

 

  1. $\frac{2}{5-\pi}$

  2. $\frac{2}{\pi-5}$

  3. $\frac{2}{\pi+5}$

  4. $\frac{-2}{\pi+5}$


Correct Option: 1

Solution:

Leave a comment